刘震国

发布者:朱枫发布时间:2020-09-28浏览次数:803

刘震国,男,博士,东南大学信息科学与工程学院副教授,博士生导师

2005.9-2006.10在意大利都灵理工(Politecnico de Torino) 获二级硕士学位;2008年赴瑞士洛桑联邦工学院(Ecole Polytechnique Fédérale de Lausanne, EPFL)短期进修;2011.11-2012.12 新加坡国立大学(National University of Singapore)高级访问学者;2014.8-2015.8美国休斯顿大学(University of Houston) 博士后,师从国际著名电磁理论专家David. R. Jackson教授。IEEE AP Transaction等国际一流期刊及国际会议上发表论文五十余篇,获国家发明专利授权10项。主要从事天线理论、电磁超材料应用、无线通信中的射频技术、石墨烯在电磁领域应用、电磁吸波、传感器物联网应用等方面的研究。

办公地点:无线谷,A4楼,4419

研究方向:05天线理论与技术;07电磁兼容;08无线通信中的射频技术;09 新型电磁材料研究

Emailliuzhenguo@seu.edu.cn


代表性期刊论文:(※通讯作者, *共同第一作者)

1. L. Ju, Z.G. Liu, B.Y. Yu, H.Chen, Z.D. Xiao, W.B. Lu, Stretchable and Dynamically Tunable Attenuator Based on Graphene, IEEE Trans. Microwave Theory and Techniques,2022(early access)

2. Z.G. Liu, C. Zhang, R.J. Yin, W.B.Lu, Multifunctional Low-Profile Fabry-Perot Resonator Antenna Integrated with Solar Cells, IEEE Trans on Antenna and Propag., 2022(early access)

3. B.Y. Yu, Z.H. Wang, L. Ju, C. Zhang, Z.G. Liu, L. Tao, W.B. Lu, Flexible and Wearable Hybrid RF and Solar Energy Harvesting System, IEEE Trans. Antennas Propagation., vol.70, no.3, 2022, pp.2223-2233.

4. M.Y. Geng, Z.G. Liu, H. Chen, X.Z. Bo, X.L. Yang, W.B. Lu, “Flexible and Dual-Tunable Radar Absorber Enabled by Graphene”, Advanced Materials Technologies, 2022, 2200028.

5. Z.G. Liu, R.J. Yin, Z.N. Ying, W.B. Lu, K.C. Tseng, Dual-Band and Shared-Aperture Fabry-Perot Cavity Antenna, IEEE Antenna and Wireless Propagation Letters, vol.20, no.9, 2021, pp.1686-1690.

6. C. SongX. MengH. ChenZ.G. Liu※,Q. ZhanY. Sun※,W. LuY. Dai※,“Flexible  graphene-based films with three-dimensional conductive network via simple drop-casting toward electromagnetic interference shielding , Composites Communications, 24, 100632, 2021

7. C. Zhang, Z.G. Liu, B.Y. Yu, W.B. Lu, K.C. Tseng, Hybrid energy harvester based on dual band transparent dielectric resonator antenna”, Microwave and optical technology lett., 2021, 33145.

8. M.Y. Geng, Z.G. Liu, W.J. Wu, H. Chen, B. Wu, W.B. Lu,  A Dynamically Tunable Microwave Absorber Based on Graphene, IEEE Trans. Antennas Propagation., vol.68, no.6, 2020, pp.4706-4713.

9. Z.P. Chen, W.B. Lu, Z.G. Liu, A.Q. Zhang, H. Chen,  Dynamically Tunable Integrated Device for Attenuation, Amplification, and Transmission of SSPP Using Graphene, IEEE Trans. Antennas Propagation., vol.68, no.5, 2020, pp.3953-3962.

10. H. Chen, Z.G. Liu, W.B. Lu, A.Q. Zhang, Z.H. Jiang,  Full Polarization Transformation Using Graphene in Microwave Frequencies, IEEE Trans. Antennas Propagation., vol.68, no.5, 2020, pp.3760-3769.

11. J. Wang, W.B. Lu, Z.G. Liu, A.Q. Zhang, and H. Chen, Graphene-Based Microwave Antennas With Reconfigurable Pattern, IEEE Trans. Antennas Propagation., vol.68, no.4, 2020, pp.2504-2510.

12. A.Q. Zhang, Z.G. Liu, W.B. Lu, H. Chen, A Tunable Attenuator Based on a Graphene-Loaded Coupled Microstrip Line, IEEE Trans. Microwave Theory and Techniques, vol.68, no.3, 2020, pp.939-950.

13. H. Chen, W.B. Lu, Z.G. Liu, Z.H. Jiang, Flexible Rasorber Based on Graphene with Energy Manipulation Function, IEEE Trans. Antennas Propagation., vol.68, no.1, 2020, pp.351-359.

14. W.B. Lu, J.W. Wang, J. Zhang, Z.G. Liu, H. Chen, W.J. Song, Z.H. Jiang, Flexible and Optically Transparent Microwave Absorber with Wide Bandwidth Based on Graphene, Carbon, 152, 2019, 70-76.

15. C.L. Chen, Z.G. Liu, H. Wang, Y.X. Guo,  Metamaterial-Inspired Self-polarizing Dual band Dual Orthogonal Circularly Polarized Fabry-Perot Resonator Antennas, IEEE Trans. Antennas Propagation., vol. 67, no.2, 2019, pp.1329-1334.

16. A.Q. Zhang*, Z.G. Liu*, W.B. Lu, H. Chen,  Graphene-Based Dynamically Tunable Attenuator on a Coplanar Waveguide or a Slotline, IEEE Trans. Microwave Theory and Techniques, vol.67, no.1, 2019, pp.70-77.

17. A.Q. Zhang*, Z.G. Liu*, W.B. Lu, H. Chen, Dynamically Tunable Attenuator on a Graphene Based Microstrip Line, IEEE Trans. Microwave Theory and Techniques, vol.67, no.2, 2019, pp.746-753.

18. H. Chen*, Z.G. Liu*, W.B. Lu, A.Q. Zhang, X.B. Li, J. Zhang,  Microwave Beam Reconfiguration Based on Graphene Ribbon, IEEE Trans. Antennas Propagation., vol. 66, no.11, 2018, pp.6049-6056.

19. H. Chen, W.B. Lu, Z.G. Liu, J. Zhang, A.Q. Zhang, B. Wu, Experimental Demonstration of Microwave Absorber Using Large-Area Multilayer Graphene-Based Frequency Selective Surface, IEEE Trans. Microwave Theory and Techniques, vol.66, No.8, 2018, pp.3807-3816.

20. A.Q. Zhang, W.B. Lu, Z.G. Liu, H. Chen, B.H. Huang,Dynamically Tunable Substrate-Integrated- Waveguide Attenuator Using Graphene, IEEE Trans. Microwave Theory and Techniques, vol.66, No.6, 2018, pp.3081-3089.

21. A.Q. Zhang*, Z.G. Liu*, W.B. Lu, H. Chen,Graphene-based dynamically tunable attenuator on a half-mode substrate integrated waveguide , Appl. Phys. Lett. 112, 161903, 2018.

22. B.H. Huang, W.B. Lu, Z.G. Liu, S.P. Gao, Low-energy high-speed plasmonic enhanced modulator using graphene, Optics Express, vol.26, no.6, 7358, 2018.

23. H. Chen, W.B. Lu, Z.G. Liu, J. Zhang, B.H. Huang, Efficient Manipulation of Spoof Surface Plasmon Polaritons Based on Rotated Complementary H-Shaped Resonator Metasurface, IEEE Trans. Antennas Propagation., Vol.65, No.12, 2017, pp.7383-7388.

24. Z.G. Liu, W.B. Lu, W. Yang, Enhanced bandwidth of highly directive emission Fabry-Perot resonator antenna with tapered effective near-zero index using metasurface, Scientific Reports, vol.7 : 11455, 2017.

25. D. Wang*, Z.G. Liu*, J. Zhao, Q. Cheng , T. J. Cui,Accurate Design of Low Scattering Metasurface Using Iterative Fourier Transform Algorithm, Scientific Reports, vol.7 : 11346, 2017.

26. Z.G. Liu, W.-B. Lu, Low-Profile Design of Broadband High Gain Circularly Polarized Fabry-Perot Resonator Antenna and its Array with Linearly Polarized Feed, Access IEEE, vol. 5, pp. 7164-7172, 2017.

27. Z.G. Liu, W.B. Lu, Broadband Design of Circularly Polarized High Gain Fabry-Perot Resonator Antenna with Simple Array Thinning Technique, Microwave and optical technology lett., vol.59, 3171-3176.

28. W.-B. Lu, J.L. Liu, J. Zhang, J. Wang and Z.G. Liu, Polarization independent transparency window induced by complementary graphene metasurfaces, Journal of Physics D: Applied Physics, vol.50, no.1, 2017, 015016.

29. Z.G. Liu, Z.X. Cao, Compact Low-Profile Circularly Polarized Fabry-Perot Resonator Antenna Fed by Linearly Microstrip patch, IEEE Antenna and Wireless Propagation Letters, Vol.15, 2016, pp.524-527.

30. Z.G. Liu, Y.X. Guo, Compact Low-Profile Dual Band Metamaterial Antenna for Body Centric Communications,IEEE Antenna and Wireless Propagation Letters, Vol.14, 2015, pp.863-866.

31. Y.J. Cheng, Y.X. Guo, Z.G. Liu, W-Band Large-Scale High-Gain Planar Integrated Antenna Array, IEEE Trans.Antennas Propagation.,Vol.62,No.6,2014, pp.3370-3373.

32. Z.G. Liu, Y.X. Guo, Dual band low profile antenna for body centric communications, IEEE Trans.Antennas Propagation.,Vol.61,No.4, 2013, pp.2282-2285.

33. Z.G. Liu, T.H. Liu, Comparative Study of Fabry-Perot resonator antenna with PMC and PEC ground Plane, PIER B, Vol.32, 2011, pp.299-317.

34. Z.G. Liu, “Fabry-Perot resonator antenna”, International Journal of Infrared Millimeter and Terahz Waves, Vol.31, No.4, 2010, pp.391-403.

35. Z.G. Liu, Y.X. Guo, Effect of primary source location on Fabry-Perot resonator antenna with PEC/PMC ground plate, International Journal of Infrared Millimeter and Terahz Waves, Vol.31, No.9, 2010, pp.2022-2031.

36. Z.G. Liu, Z.C. Ge, Research Progress on Fabry-Perot Resonator antenna, Journal of Zhejiang University SCIENCE A, Vol.10,No.4, 2009, pp.583-588.

37. Z.G. Liu, W.X. Zhang, D.L. Fu and et al, Broadband Fabry-Perot resonator printed antennas using FSS superstrate with dissimilar size”,Microwave and optical technology lett., Vol. 50, No.6, 2008, pp.1623-1627.

38. Z.G. Liu, W.X. Zhang, Z.H. Wu, Z.C. Ge, Comparative approach of printed reflectarray with/without electromagnetic bandgap ground plate, Microwave and optical technology lett., Vol.49, No.8, 2007, pp.1968-1971.

39. Z.H. Wu, W.X. Zhang, Z.G. Liu, Circularly Polarised Reflectarray with Linearly Polarised feed, IEE Electronics Letters, Vol.41, No.7, 2005, pp.387-388.